Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Res ; 10(1): 40-55, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34795032

RESUMEN

Macrophages often abound within tumors, express colony-stimulating factor 1 receptor (CSF1R), and are linked to adverse patient survival. Drugs blocking CSF1R signaling have been used to suppress tumor-promoting macrophage responses; however, their mechanisms of action remain incompletely understood. Here, we assessed the lung tumor immune microenvironment in mice treated with BLZ945, a prototypical small-molecule CSF1R inhibitor, using single-cell RNA sequencing and mechanistic validation approaches. We showed that tumor control was not caused by CSF1R+ cell depletion; instead, CSF1R targeting reshaped the CSF1R+ cell landscape, which unlocked cross-talk between antitumoral CSF1R- cells. These cells included IFNγ-producing natural killer and T cells, and an IL12-producing dendritic cell subset, denoted as DC3, which were all necessary for CSF1R inhibitor-mediated lung tumor control. These data indicate that CSF1R targeting can activate a cardinal cross-talk between cells that are not macrophages and that are essential to mediate the effects of T cell-targeted immunotherapies and promote antitumor immunity.See related Spotlight by Burrello and de Visser, p. 4.


Asunto(s)
Células Dendríticas/inmunología , Inmunoterapia/métodos , Interferón gamma/metabolismo , Interleucina-12/metabolismo , Neoplasias Pulmonares/terapia , Animales , Benzotiazoles/farmacología , Línea Celular Tumoral , Femenino , Neoplasias Pulmonares/inmunología , Ratones , Ratones Endogámicos C57BL , Ácidos Picolínicos/farmacología , Microambiente Tumoral/efectos de los fármacos , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Angew Chem Int Ed Engl ; 59(17): 6839-6846, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32004403

RESUMEN

Rapid analysis of single and scant cell populations is essential in modern diagnostics, yet existing methods are often limited and slow. Herein, we describe an ultra-fast, highly efficient cycling method for the analysis of single cells based on unique linkers for tetrazine (Tz)/trans-cyclooctene (TCO)-mediated quenching. Surprisingly, the quenching reaction rates were more than 3 orders of magnitude faster (t1/2 <1 s) than predicted. This allowed multi-cycle staining and immune cell profiling within an hour, leveraging the accelerated kinetics to open new diagnostic possibilities for rapid cellular analyses.


Asunto(s)
Imagen Óptica/métodos , Ciclooctanos/química , Células HeLa , Humanos , Cinética , Análisis de la Célula Individual
3.
Angew Chem Weinheim Bergstr Ger ; 132(17): 6906-6913, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34366494

RESUMEN

Rapid analysis of single and scant cell populations is essential in modern diagnostics, yet existing methods are often limited and slow. Here we describe an ultra-fast, highly efficient cycling method for the analysis of single cells based on unique linkers for tetrazine (Tz) / trans-cyclooctene (TCO) mediated quenching. Surprisingly, the quenching reaction rates were more than 3 orders of magnitude faster (t1/2 < 1 sec) than predicted. This allowed multi-cycle staining and immune cell profiling within an hour, leveraging the accelerated kinetics to open new diagnostic possibilities for rapid cellular analyses.

4.
ACS Chem Biol ; 15(1): 151-157, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31809013

RESUMEN

The receptor tyrosine kinase inhibitor, Tie2, has significant roles in endothelial signaling and angiogenesis and is relevant in the pathophysiology of several diseases. However, there are relatively few small molecule probes available to study Tie2, making the evaluation of its activity in vivo difficult. Recently, it was discovered that the small molecule rebastinib (DCC-2036) is a potent Tie2 inhibitor. We hypothesized that fluorescent derivatives of rebastinib could be used as imaging agents for Tie2. On the basis of crystallography structures, we synthesized three fluorescent derivatives, which we then evaluated in both in vitro and in vivo assays. We found that the Rebastinib-BODIPY TMR (Reb-TMR) derivative has superior imaging characteristics in vitro, and we successfully labeled endothelial cells in vivo. We propose that this probe could be further used in in vivo applications for studying the role of Tie2 in disease.


Asunto(s)
Colorantes Fluorescentes/química , Imagen Óptica/métodos , Inhibidores de Proteínas Quinasas/química , Pirazoles/química , Piridinas/química , Quinolinas/química , Receptor TIE-2/metabolismo , Técnicas Biosensibles , Compuestos de Boro/química , Permeabilidad de la Membrana Celular , Células Endoteliales/metabolismo , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/metabolismo , Pirazoles/metabolismo , Piridinas/metabolismo , Quinolinas/metabolismo , Rodaminas/química , Relación Estructura-Actividad
5.
Theranostics ; 9(26): 8426-8436, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31879528

RESUMEN

Tumor-associated macrophages (TAMs) are often abundant in solid cancers, assuming an immunosuppressive (M2-like) phenotype which supports tumor growth and immune escape. Recent methods have focused on identification of means (e.g., drugs, nanomaterials) that polarize TAMs to a tumor suppressive (M1-like) phenotype; however, reducing the systemic side effects of these therapies and enabling their delivery to TAMs has remained a challenge. Methods: Here, we develop R848-Ad, an adamantane-modified derivative of the toll-like receptor (TLR) 7/8 agonist resiquimod (R848) through iterative drug screening against reporter cell lines. The adamantane undergoes guest-host interaction with cyclodextrin nanoparticles (CDNPs), enabling drug loading under aqueous conditions and TAM-targeted drug delivery. Therapeutic efficacy and systemic side effects were examined in a murine MC38 cancer model. Results: R848-Ad retained macrophage polarizing activity through agonization of TLR7/8, and the adamantane moiety improved drug affinity for the CDNP. In preclinical studies, nanoformulated R848-Ad resulted in a drastic reduction in measurable systemic effects (loss of body weight) relative to similarly formulated R848 alone while arresting tumor growth. Conclusions: The findings demonstrate the ability of strong nanoparticle-drug interactions to limit systemic toxicity of TLR agonists while simultaneously maintaining therapeutic efficacy.


Asunto(s)
Inmunoterapia/métodos , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/antagonistas & inhibidores , Adamantano/química , Animales , Proliferación Celular/efectos de los fármacos , Ciclodextrinas/química , Femenino , Imidazoles/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Células RAW 264.7
6.
Proc Natl Acad Sci U S A ; 116(24): 11966-11971, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31123149

RESUMEN

Myeloperoxidase (MPO) is a critical proinflammatory enzyme implicated in cardiovascular, neurological, and rheumatological diseases. Emerging therapies targeting inflammation have raised interest in tracking MPO activity in patients. We describe 18F-MAPP, an activatable MPO activity radioprobe for positron emission tomography (PET) imaging. The activated radioprobe binds to proteins and accumulates at sites of MPO activity. The radioprobe 18F-MAPP has a short blood half-life, remains stable in plasma, does not demonstrate cytotoxicity, and crosses the intact blood-brain barrier. The 18F-MAPP imaging detected sites of elevated MPO activity in living mice embedded with human MPO and in mice induced with chemical inflammation or myocardial infarction. The 18F-MAPP PET imaging noninvasively differentiated varying amounts of MPO activity, competitive inhibition, and MPO deficiency in living animals, confirming specificity and showing that the radioprobe can quantify changes in in vivo MPO activity. The radiosynthesis has been optimized and automated, an important step in translation. These data indicate that 18F-MAPP is a promising translational candidate to noninvasively monitor MPO activity and inflammation in patients.


Asunto(s)
Peroxidasa/metabolismo , Animales , Femenino , Radioisótopos de Flúor/metabolismo , Humanos , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Tomografía de Emisión de Positrones/métodos
7.
Bioconjug Chem ; 30(3): 733-740, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30615425

RESUMEN

Amiodarone is an effective antiarrhythmic drug used to treat and prevent different types of cardiac arrhythmias. However, amiodarone can have considerable side effects resulting from accumulation in off-target tissues. Cardiac macrophages are highly prevalent tissue-resident immune cells with importance in homeostatic functions, including immune response and modulation of cardiac conduction. We hypothesized that amiodarone could be more efficiently delivered to the heart via cardiac macrophages, an important step toward reducing overall dose and off-target tissue accumulation. Toward this goal, we synthesized a nanoparticle drug carrier composed of l-lysine cross-linked succinyl-ß-cyclodextrin that demonstrates amiodarone binding through supramolecular host-guest interaction as well as a high macrophage affinity. Biodistribution analyses at the organ and single-cell level demonstrate accumulation of nanoparticles in the heart resulting from rapid uptake by cardiac macrophages. Nanoparticle assisted delivery of amiodarone resulted in a 250% enhancement in the selective delivery of the drug to cardiac tissue in part due to a concomitant decrease of pulmonary accumulation, the main source of off-target toxicity.


Asunto(s)
Amiodarona/administración & dosificación , Antiarrítmicos/administración & dosificación , Portadores de Fármacos , Corazón/efectos de los fármacos , Amiodarona/farmacocinética , Amiodarona/uso terapéutico , Animales , Antiarrítmicos/farmacocinética , Antiarrítmicos/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Células RAW 264.7 , Distribución Tisular , beta-Ciclodextrinas/farmacocinética
8.
Nat Biomed Eng ; 2(8): 578-588, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-31015631

RESUMEN

Tumour-associated macrophages are abundant in many cancers, and often display an immune-suppressive M2-like phenotype that fosters tumour growth and promotes resistance to therapy. Yet, macrophages are highly plastic and can also acquire an anti-tumorigenic M1-like phenotype. Here, we show that R848, an agonist of the toll-like receptors TLR7 and TLR8 identified in a morphometric-based screen, is a potent driver of the M1 phenotype in vitro and that R848-loaded ß-cyclodextrin nanoparticles (CDNP-R848) lead to efficient drug delivery to tumour-associated macrophages in vivo. As a monotherapy, the administration of CDNP-R848 in multiple tumour models in mice altered the functional orientation of the tumour immune microenvironment towards an M1 phenotype, leading to controlled tumour growth and protecting the animals against tumour rechallenge. When used in combination with the immune checkpoint inhibitor anti-PD-1, we observed improved immunotherapy response rates, including in a tumour model resistant to anti-PD-1 therapy alone. Our findings demonstrate the ability of rationally engineered drug-nanoparticle combinations to efficiently modulate tumour-associated macrophages for cancer immunotherapy.


Asunto(s)
Inmunoterapia/métodos , Macrófagos/efectos de los fármacos , Nanopartículas/química , Neoplasias/terapia , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Imidazoles/química , Imidazoles/farmacología , Macrófagos/inmunología , Ratones , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
9.
J Am Chem Soc ; 139(4): 1690-1698, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28060501

RESUMEN

In the present study, we demonstrate the utility of "admixture screening" for the discovery of new multicomponent heterogeneous Pd catalyst compositions that are highly effective for aerobic oxidative methyl esterification of primary alcohols. The identification of possible catalysts for this reaction was initiated by the screening of simple binary and ternary admixtures of Pd/charcoal in combination with one or two metal and/or metalloid components as the catalyst. This approach permitted rapid evaluation of over 400 admixture combinations for the oxidative methyl esterification of 1-octanol at 60 °C in methanol. Product yields from these reactions varied widely, ranging from 2% to 88%. The highest yields were observed with Bi-, Te-, and Pb-based additives, and particularly from those containing both Bi and Te. Validation of the results was achieved by preparing specific PdBiTe catalyst formulations via a wet-impregnation method, followed by application of response surface methodology to identify the optimal Pd-Bi-Te catalyst stoichiometry. This approach revealed two very effective catalyst compositions: PdBi0.47Te0.09/C (PBT-1) and PdBi0.35Te0.23/C (PBT-2). The former catalyst was used in batch aerobic oxidation reactions with different primary alcohols and shown to be compatible with substrates bearing heterocycle and halide substituents. The methyl ester products were obtained in >90% yield in nearly all cases. Implementation of the PBT-2 catalyst in a continuous-flow packed-bed reactor achieved nearly 60 000 turnovers with no apparent loss of catalytic activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...